deeptrafo: Fitting Deep Conditional Transformation Models

Allows for the specification of deep conditional transformation models (DCTMs) and ordinal neural network transformation models, as described in Baumann et al (2021) <doi:10.1007/978-3-030-86523-8_1> and Kook et al (2022) <doi:10.1016/j.patcog.2021.108263>. Extensions such as autoregressive DCTMs (Ruegamer et al, 2023, <doi:10.1007/s11222-023-10212-8>) and transformation ensembles (Kook et al, 2022, <doi:10.48550/arXiv.2205.12729>) are implemented. The software package is described in Kook et al (2024, <doi:10.18637/jss.v111.i10>).

Getting started

Package details

AuthorLucas Kook [aut, cre], Philipp Baumann [aut], David Ruegamer [aut]
MaintainerLucas Kook <lucasheinrich.kook@gmail.com>
LicenseGPL-3
Version1.0-0
URL https://github.com/neural-structured-additive-learning/deeptrafo
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("deeptrafo")

Try the deeptrafo package in your browser

Any scripts or data that you put into this service are public.

deeptrafo documentation built on April 3, 2025, 10:38 p.m.