Computations of Fisher's z-tests concerning different kinds of correlation differences. The 'diffpwr' family entails approaches to estimating statistical power via Monte Carlo simulations. Important to note, the Pearson correlation coefficient is sensitive to linear association, but also to a host of statistical issues such as univariate and bivariate outliers, range restrictions, and heteroscedasticity (e.g., Duncan & Layard, 1973 <doi:10.1093/BIOMET/60.3.551>; Wilcox, 2013 <doi:10.1016/C2010-0-67044-1>). Thus, every power analysis requires that specific statistical prerequisites are fulfilled and can be invalid if the prerequisites do not hold. To this end, the 'bootcor' family provides bootstrapping confidence intervals for the incorporated correlation difference tests.
Package details |
|
---|---|
Author | Christian Blötner [aut, cre] |
Maintainer | Christian Blötner <c.bloetner@gmail.com> |
License | GPL (>= 2) |
Version | 0.8.4 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.