Provides several functions to simplify using the 'glmnet' package: converting data frames into matrices ready for 'glmnet'; b) imputing missing variables multiple times; c) fitting and applying prediction models straightforwardly; d) assigning observations to folds in a balanced way; e) cross-validate the models; f) selecting the most representative model across imputations and folds; and g) getting the relevance of the model regressors; as described in several publications: Solanes et al. (2022) <doi:10.1038/s41537-022-00309-w>, Palau et al. (2023) <doi:10.1016/j.rpsm.2023.01.001>, Sobregrau et al. (2024) <doi:10.1016/j.jpsychores.2024.111656>.
Package details |
|
---|---|
Author | Joaquim Radua [aut, cre] (<https://orcid.org/0000-0003-1240-5438>) |
Maintainer | Joaquim Radua <quimradua@gmail.com> |
License | GPL-3 |
Version | 1.0 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.