Implement and fit a variety of short-memory (SM) and long-memory (LM) models from a very broad family of exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models, such as a MEGARCH (modified EGARCH), FIEGARCH (fractionally integrated EGARCH), FIMLog-GARCH (fractionally integrated modulus Log-GARCH), and more. The FIMLog-GARCH as part of the EGARCH family is discussed in Feng et al. (2023) <https://econpapers.repec.org/paper/pdnciepap/156.htm>. For convenience and the purpose of comparison, a variety of other popular SM and LM GARCH-type models, like an APARCH model, a fractionally integrated APARCH (FIAPARCH) model, standard GARCH and fractionally integrated GARCH (FIGARCH) models, GJR-GARCH and FIGJR-GARCH models, TGARCH and FITGARCH models, are implemented as well as dual models with simultaneous modelling of the mean, including dual long-memory models with a fractionally integrated autoregressive moving average (FARIMA) model in the mean and a long-memory model in the variance, and semiparametric volatility model extensions. Parametric models and parametric model parts are fitted through quasi-maximum-likelihood estimation. Furthermore, common forecasting and backtesting functions for value-at-risk (VaR) and expected shortfall (ES) based on the package's models are provided.
Package details |
|
---|---|
Author | Dominik Schulz [aut, cre] (Paderborn University, Germany), Yuanhua Feng [aut] (Paderborn University, Germany), Christian Peitz [aut] (Financial Intelligence Unit (German Government)), Oliver Kojo Ayensu [aut] (Paderborn University, Germany), Thomas Gries [ctb] (Paderborn University, Germany), Sikandar Siddiqui [ctb] (Deloitte Audit Analytics GmbH, Frankfurt, Germany), Shujie Li [ctb] (Paderborn University, Germany) |
Maintainer | Dominik Schulz <dominik.schulz@uni-paderborn.de> |
License | GPL-3 |
Version | 1.0.2 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.