Nothing
Quantify the serial correlation across lags of a given functional time series using the autocorrelation function and a partial autocorrelation function for functional time series proposed in Mestre et al. (2021) <doi:10.1016/j.csda.2020.107108>. The autocorrelation functions are based on the L2 norm of the lagged covariance operators of the series. Functions are available for estimating the distribution of the autocorrelation functions under the assumption of strong functional white noise.
Package details |
|
---|---|
Author | Guillermo Mestre Marcos [aut, cre], José Portela González [aut], Gregory Rice [aut], Antonio Muñoz San Roque [ctb], Estrella Alonso Pérez [ctb] |
Maintainer | Guillermo Mestre Marcos <guillermo.mestre@comillas.edu> |
License | GPL (>= 2) |
Version | 1.0.0 |
URL | https://github.com/GMestreM/fdaACF |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.