fddm: Fast Implementation of the Diffusion Decision Model

Provides the probability density function (PDF), cumulative distribution function (CDF), the first-order and second-order partial derivatives of the PDF, and a fitting function for the diffusion decision model (DDM; e.g., Ratcliff & McKoon, 2008, <doi:10.1162/neco.2008.12-06-420>) with across-trial variability in the drift rate. Because the PDF, its partial derivatives, and the CDF of the DDM both contain an infinite sum, they need to be approximated. 'fddm' implements all published approximations (Navarro & Fuss, 2009, <doi:10.1016/j.jmp.2009.02.003>; Gondan, Blurton, & Kesselmeier, 2014, <doi:10.1016/j.jmp.2014.05.002>; Blurton, Kesselmeier, & Gondan, 2017, <doi:10.1016/j.jmp.2016.11.003>; Hartmann & Klauer, 2021, <doi:10.1016/j.jmp.2021.102550>) plus new approximations. All approximations are implemented purely in 'C++' providing faster speed than existing packages.

Package details

AuthorKendal B. Foster [aut], Henrik Singmann [ctb, cre] (<https://orcid.org/0000-0002-4842-3657>), Achim Zeileis [ctb] (methods partially taken from betareg)
MaintainerHenrik Singmann <singmann@gmail.com>
LicenseGPL (>= 2)
Version1.0-2
URL https://github.com/rtdists/fddm
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("fddm")

Try the fddm package in your browser

Any scripts or data that you put into this service are public.

fddm documentation built on July 2, 2024, 5:06 p.m.