Estimates generalized additive latent and mixed models using maximum marginal likelihood, as defined in Sorensen et al. (2023) <doi:10.1007/s11336-023-09910-z>, which is an extension of Rabe-Hesketh and Skrondal (2004)'s unifying framework for multilevel latent variable modeling <doi:10.1007/BF02295939>. Efficient computation is done using sparse matrix methods, Laplace approximation, and automatic differentiation. The framework includes generalized multilevel models with heteroscedastic residuals, mixed response types, factor loadings, smoothing splines, crossed random effects, and combinations thereof. Syntax for model formulation is close to 'lme4' (Bates et al. (2015) <doi:10.18637/jss.v067.i01>) and 'PLmixed' (Rockwood and Jeon (2019) <doi:10.1080/00273171.2018.1516541>).
Package details |
|
---|---|
Author | Øystein Sørensen [aut, cre] (ORCID: <https://orcid.org/0000-0003-0724-3542>), Douglas Bates [ctb], Ben Bolker [ctb], Martin Maechler [ctb], Allan Leal [ctb], Fabian Scheipl [ctb], Steven Walker [ctb], Simon Wood [ctb] |
Maintainer | Øystein Sørensen <oystein.sorensen@psykologi.uio.no> |
License | GPL (>= 3) |
Version | 0.2.2 |
URL | https://github.com/LCBC-UiO/galamm https://lcbc-uio.github.io/galamm/ |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.