galamm: Generalized Additive Latent and Mixed Models

Estimates generalized additive latent and mixed models using maximum marginal likelihood, as defined in Sorensen et al. (2023) <doi:10.1007/s11336-023-09910-z>, which is an extension of Rabe-Hesketh and Skrondal (2004)'s unifying framework for multilevel latent variable modeling <doi:10.1007/BF02295939>. Efficient computation is done using sparse matrix methods, Laplace approximation, and automatic differentiation. The framework includes generalized multilevel models with heteroscedastic residuals, mixed response types, factor loadings, smoothing splines, crossed random effects, and combinations thereof. Syntax for model formulation is close to 'lme4' (Bates et al. (2015) <doi:10.18637/jss.v067.i01>) and 'PLmixed' (Rockwood and Jeon (2019) <doi:10.1080/00273171.2018.1516541>).

Package details

AuthorØystein Sørensen [aut, cre] (ORCID: <https://orcid.org/0000-0003-0724-3542>), Douglas Bates [ctb], Ben Bolker [ctb], Martin Maechler [ctb], Allan Leal [ctb], Fabian Scheipl [ctb], Steven Walker [ctb], Simon Wood [ctb]
MaintainerØystein Sørensen <oystein.sorensen@psykologi.uio.no>
LicenseGPL (>= 3)
Version0.2.2
URL https://github.com/LCBC-UiO/galamm https://lcbc-uio.github.io/galamm/
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("galamm")

Try the galamm package in your browser

Any scripts or data that you put into this service are public.

galamm documentation built on June 8, 2025, 12:42 p.m.