Nothing
Spatio-temporal causal inference based on point process data. You provide the raw data of locations and timings of treatment and outcome events, specify counterfactual scenarios, and the package estimates causal effects over specified spatial and temporal windows. See Papadogeorgou, et al. (2022) <doi:10.1111/rssb.12548> and Mukaigawara, et al. (2024) <doi:10.31219/osf.io/5kc6f>.
Package details |
|
---|---|
Author | Mitsuru Mukaigawara [cre, aut] (<https://orcid.org/0000-0001-6530-2083>), Lingxiao Zhou [aut], Georgia Papadogeorgou [aut] (<https://orcid.org/0000-0002-1982-2245>), Jason Lyall [aut] (<https://orcid.org/0000-0001-9117-7503>), Kosuke Imai [aut] (<https://orcid.org/0000-0002-2748-1022>) |
Maintainer | Mitsuru Mukaigawara <mitsuru_mukaigawara@g.harvard.edu> |
License | MIT + file LICENSE |
Version | 0.3.4 |
URL | https://github.com/mmukaigawara/geocausal |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.