Man pages for glmnetr
Nested Cross Validation for the Relaxed Lasso and Other Machine Learning Models

aicregIdentify model based upon AIC criteria from a stepreg()...
ann_tab_cvFit an Artificial Neural Network model on "tabular" provided...
ann_tab_cv_bestFit multiple Artificial Neural Network models on "tabular"...
best.predsGet the best models for the steps of a stepreg() fit
boot.factor.foldidGenerate foldid's by 0/1 factor for bootstrap like samples...
calcelosscalculate cross-entry for multinomial outcomes
calplotConstruct calibration plots for a nested.glmnetr output...
cox.sat.devCalculate the CoxPH saturated log-likelihood
cv.glmnetrGet a cross validation informed relaxed lasso model fit.
cv.stepregCross validation informed stepwise regression model fit.
devrat_Calculate deviance ratios for CV based
diff_timeOutput to console the elapsed and split times
diff_time1Get elapsed time in c(hour, minute, secs)
factor.foldidGenerate foldid's by factor levels
get.foldidGet foldid's with branching for cox, binomial and gaussian...
get.id.foldidGet foldid's when id variable is used to identify groups of...
glmnetrFit relaxed part of lasso model
glmnetr.cisA redirect to nested.cis()
glmnetr.compcvA redirect to nested.compare
glmnetr_seedGet seeds to store, facilitating replicable results
glmnetr.simdataGenerate example data
nested.cisCalculate performance measure "nominal" CI's and p's
nested.compareCompare cross validation fit performances from a...
nested.compare_0_5_1Compare cross validation fit performances from a...
nested.glmnetrUsing (nested) cross validation, describe and compare some...
orf_tuneFit a Random Forest model on data provided in matrix and...
plot.cv.glmnetrPlot cross-validation deviances, or model coefficients.
plot.glmnetrPlot the relaxed lasso coefficients.
plot.nested.glmnetrPlot results from a nested.glmnetr() output
plot_perf_glmnetrPlot nested cross validation performance summaries
predict_ann_tabGet predicteds for an Artificial Neural Network model fit in...
predict.cv.glmnetrGive predicteds based upon a cv.glmnetr() output object.
predict.cv.stepregBeta's or predicteds based upon a cv.stepreg() output object.
predict.glmnetrGet predicteds or coefficients using a glmnetr output object
predict.nested.glmnetrGive predicteds based upon the cv.glmnet output object...
print.nested.glmnetrA redirect to the summary() function for nested.glmnetr()...
print.orf_tunePrint output from orf_tune() function
print.rf_tunePrint output from rf_tune() function
rederive_orfRederive Oblique Random Forest models not kept in...
rederive_rfRederive Random Forest models not kept in nested.glmnetr()...
rederive_xgbRederive XGB models not kept in nested.glmnetr() output
rf_tuneFit a Random Forest model on data provided in matrix and...
roundperfround elements of a summary.glmnetr() output
stepregFit the steps of a stepwise regression.
summary.cv.glmnetrOutput summary of a cv.glmnetr() output object.
summary.cv.stepregSummarize results from a cv.stepreg() output object.
summary.nested.glmnetrSummarize a nested.glmnetr() output object
summary.orf_tuneSummarize output from rf_tune() function
summary.rf_tuneSummarize output from rf_tune() function
summary.stepregBriefly summarize steps in a stepreg() output object, i.e. a...
xgb.simpleGet a simple XGBoost model fit (no tuning)
xgb.tunedGet a tuned XGBoost model fit
glmnetr documentation built on April 3, 2025, 6:45 p.m.