aicreg | Identify model based upon AIC criteria from a stepreg()... |
ann_tab_cv | Fit an Artificial Neural Network model on "tabular" provided... |
ann_tab_cv_best | Fit multiple Artificial Neural Network models on "tabular"... |
best.preds | Get the best models for the steps of a stepreg() fit |
boot.factor.foldid | Generate foldid's by 0/1 factor for bootstrap like samples... |
calceloss | calculate cross-entry for multinomial outcomes |
calplot | Construct calibration plots for a nested.glmnetr output... |
cox.sat.dev | Calculate the CoxPH saturated log-likelihood |
cv.glmnetr | Get a cross validation informed relaxed lasso model fit. |
cv.stepreg | Cross validation informed stepwise regression model fit. |
devrat_ | Calculate deviance ratios for CV based |
diff_time | Output to console the elapsed and split times |
diff_time1 | Get elapsed time in c(hour, minute, secs) |
factor.foldid | Generate foldid's by factor levels |
get.foldid | Get foldid's with branching for cox, binomial and gaussian... |
get.id.foldid | Get foldid's when id variable is used to identify groups of... |
glmnetr | Fit relaxed part of lasso model |
glmnetr.cis | A redirect to nested.cis() |
glmnetr.compcv | A redirect to nested.compare |
glmnetr_seed | Get seeds to store, facilitating replicable results |
glmnetr.simdata | Generate example data |
nested.cis | Calculate performance measure "nominal" CI's and p's |
nested.compare | Compare cross validation fit performances from a... |
nested.compare_0_5_1 | Compare cross validation fit performances from a... |
nested.glmnetr | Using (nested) cross validation, describe and compare some... |
orf_tune | Fit a Random Forest model on data provided in matrix and... |
plot.cv.glmnetr | Plot cross-validation deviances, or model coefficients. |
plot.glmnetr | Plot the relaxed lasso coefficients. |
plot.nested.glmnetr | Plot results from a nested.glmnetr() output |
plot_perf_glmnetr | Plot nested cross validation performance summaries |
predict_ann_tab | Get predicteds for an Artificial Neural Network model fit in... |
predict.cv.glmnetr | Give predicteds based upon a cv.glmnetr() output object. |
predict.cv.stepreg | Beta's or predicteds based upon a cv.stepreg() output object. |
predict.glmnetr | Get predicteds or coefficients using a glmnetr output object |
predict.nested.glmnetr | Give predicteds based upon the cv.glmnet output object... |
print.nested.glmnetr | A redirect to the summary() function for nested.glmnetr()... |
print.orf_tune | Print output from orf_tune() function |
print.rf_tune | Print output from rf_tune() function |
rederive_orf | Rederive Oblique Random Forest models not kept in... |
rederive_rf | Rederive Random Forest models not kept in nested.glmnetr()... |
rederive_xgb | Rederive XGB models not kept in nested.glmnetr() output |
rf_tune | Fit a Random Forest model on data provided in matrix and... |
roundperf | round elements of a summary.glmnetr() output |
stepreg | Fit the steps of a stepwise regression. |
summary.cv.glmnetr | Output summary of a cv.glmnetr() output object. |
summary.cv.stepreg | Summarize results from a cv.stepreg() output object. |
summary.nested.glmnetr | Summarize a nested.glmnetr() output object |
summary.orf_tune | Summarize output from rf_tune() function |
summary.rf_tune | Summarize output from rf_tune() function |
summary.stepreg | Briefly summarize steps in a stepreg() output object, i.e. a... |
xgb.simple | Get a simple XGBoost model fit (no tuning) |
xgb.tuned | Get a tuned XGBoost model fit |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.