Man pages for kollaR
Filtering, Visualization and Analysis of Eye Tracking Data

animated_fixation_plotCreate GIF animation of fixations on a stimulus images
aoi_testTest whether a gaze coordinates are within or outside a...
cluster2mFixation detection by two-means clustering
downsample_gazeDownsample gaze
draw_aoisDraw one or more areas of interest, AOIs, on a stimulus image...
filt_plot_2dPlot fixation filtered vs. raw or unfiltered gaze coordinates...
filt_plot_temporalPlot fixation filtered vs. raw gaze coordinates
find.transition.weightsFind transition weights for each sample in a gaze matrix.
idt_filterDispersion-based fixation detection algorithm '(I-DT)'
interpolate_with_marginInterpolate over gaps (subsequent NAs) in vector.
ivt_filterI-VT algorithm for fixation and saccade detection
kollaR-packageFiltering, Visualization, and Analysis of Eye Tracking Data
merge_adjacent_fixationsMerge adjacent fixations
plot_filter_resultsPlot validity measures from one or more fixation detection...
plot_sample_velocityPlot the sample-to-sample velocity of eye tracking data.
plot_velocity_profilesCreate ggplot of saccade velocity profiles
process_gazeInterpolation and smoothing of gaze-vector
sample.data.filteredFixation-filtered sample-by-sample example data
sample.data.fixation1Fixations from 1 individual
sample.data.fixationsFixations from 7 individuals
sample.data.processedPre-processed sample-by-sample example data
sample.data.saccadesSaccades from 3 individuals
sample.data.unprocessedUnprocessed sample-by-sample example data
static_plotPlot fixations in 2D space overlaied on a stimulus image
kollaR documentation built on April 13, 2025, 5:11 p.m.