Performs locally induced approximate GP regression for large computer experiments and spatial datasets following Cole D.A., Christianson, R., Gramacy, R.B. (2021) Statistics and Computing, 31(3), 1-21, <arXiv:2008.12857>. The approximation is based on small local designs combined with a set of inducing points (latent design points) for predictions at particular inputs. Parallelization is supported for generating predictions over an immense out-of-sample testing set. Local optimization of the inducing points design is provided based on variance-based criteria. Inducing point template schemes, including scaling of space-filling designs, are also provided.
Package details |
|
---|---|
Author | D. Austin Cole [aut, cre], Ryan B Christianson [cph], Robert B. Gramacy [cph] |
Maintainer | D. Austin Cole <austin.cole8@vt.edu> |
License | LGPL |
Version | 1.0.1 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.