An updated implementation of R package 'ranger' by Wright et al, (2017) <doi:10.18637/jss.v077.i01> for training and predicting from random forests, particularly suited to high-dimensional data, and for embedding in 'Multiple Imputation by Chained Equations' (MICE) by van Buuren (2007) <doi:10.1177/0962280206074463>. Ensembles of classification and regression trees are currently supported. Sparse data of class 'dgCMatrix' (R package 'Matrix') can be directly analyzed. Conventional bagged predictions are available alongside an efficient prediction for MICE via the algorithm proposed by Doove et al (2014) <doi:10.1016/j.csda.2013.10.025>. Survival and probability forests are not supported in the update, nor is data of class 'gwaa.data' (R package 'GenABEL'); use the original 'ranger' package for these analyses.
Package details |
|
---|---|
Author | Stephen Wade [aut, cre] (<https://orcid.org/0000-0002-2573-9683>), Marvin N Wright [ctb] |
Maintainer | Stephen Wade <stephematician@gmail.com> |
License | GPL-3 |
Version | 0.1.1 |
URL | https://gitlab.com/stephematician/literanger |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.