mcboost: Multi-Calibration Boosting

Implements 'Multi-Calibration Boosting' (2018) <https://proceedings.mlr.press/v80/hebert-johnson18a.html> and 'Multi-Accuracy Boosting' (2019) <doi:10.48550/arXiv.1805.12317> for the multi-calibration of a machine learning model's prediction. 'MCBoost' updates predictions for sub-groups in an iterative fashion in order to mitigate biases like poor calibration or large accuracy differences across subgroups. Multi-Calibration works best in scenarios where the underlying data & labels are unbiased, but resulting models are. This is often the case, e.g. when an algorithm fits a majority population while ignoring or under-fitting minority populations.

Package details

AuthorFlorian Pfisterer [aut] (ORCID: <https://orcid.org/0000-0001-8867-762X>), Susanne Dandl [ctb] (ORCID: <https://orcid.org/0000-0003-4324-4163>), Christoph Kern [ctb] (ORCID: <https://orcid.org/0000-0001-7363-4299>), Carolin Becker [ctb], Bernd Bischl [ctb] (ORCID: <https://orcid.org/0000-0001-6002-6980>), Sebastian Fischer [ctb, cre]
MaintainerSebastian Fischer <sebf.fischer@gmail.com>
LicenseLGPL (>= 3)
Version0.4.4
URL https://github.com/mlr-org/mcboost
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("mcboost")

Try the mcboost package in your browser

Any scripts or data that you put into this service are public.

mcboost documentation built on Aug. 8, 2025, 6:22 p.m.