| ahs | Australian Health Survey Data |
| anova.mcglm | Wald Tests for Fixed Effects in mcglm Models |
| coef.mcglm | Model Coefficients |
| confint.mcglm | Confidence Intervals for Model Parameters |
| covprod | Cross variability matrix |
| ESS | Generalized Error Sum of Squares |
| fit_mcglm | Chaser and Reciprocal Likelihood Algorithms |
| fitted.mcglm | Fitted Values |
| gof | Measures of Goodness-of-Fit |
| GOSHO | Gosho Information Criterion |
| Hunting | Hunting Data from Pico Basile, Bioko Island, Equatorial... |
| mc_anova_disp | Wald Tests for Dispersion Components |
| mc_bias_corrected_std | Bias-corrected Standard Error for Regression Parameters |
| mc_build_bdiag | Build a block-diagonal matrix of zeros. |
| mc_build_C | Build the joint covariance matrix |
| mc_build_F | Auxiliar function: Build F matrix for Wald multivariate test |
| mc_build_omega | Build omega matrix |
| mc_build_sigma | Build variance-covariance matrix |
| mc_build_sigma_between | Build the correlation matrix between response variables |
| mc_car | Conditional Autoregressive Model Structure |
| mc_complete_data | Complete Data Set with NA |
| mc_compute_rho | Autocorrelation Estimates |
| mc_conditional_test | Conditional Hypotheses Tests |
| mc_core_pearson | Core of the Pearson estimating function. |
| mc_correction | Pearson correction term |
| mc_cross_sensitivity | Cross-sensitivity |
| mc_cross_variability | Compute the cross-variability matrix |
| mc_derivative_cholesky | Derivatives of the Cholesky decomposition |
| mc_derivative_C_rho | Derivative of C with respect to rho. |
| mc_derivative_expm | Derivative of exponential-matrix function |
| mc_derivative_sigma_beta | Derivatives of V ^{1/2} with respect to beta. |
| mc_dexp_gold | Exponential-matrix and its derivatives |
| mc_dglm | Double Generalized Linear Models Structure |
| mc_dist | Distance Models Structure |
| mc_expm | Exponential-matrix covariance link function |
| mc_getInformation | Getting information about model parameters |
| mcglm | Fitting Multivariate Covariance Generalized Linear Models |
| mc_id | Independent Model Structure |
| mc_initial_values | Automatic Initial Values |
| mc_link_function | Link Functions |
| mc_list2vec | Auxiliar function transforms list to a vector. |
| mc_ma | Moving Average Model Structure |
| mc_manova | MANOVA-Type Test for Multivariate Covariance GLMs |
| mc_manova_disp | MANOVA-Type Test for Dispersion Components of mcglm Models |
| mc_matrix_linear_predictor | Matrix Linear Predictor |
| mc_mixed | Mixed Models Structure |
| mc_ns | Non-structured Covariance Model |
| mc_pearson | Pearson Estimating Function |
| mc_quasi_score | Quasi-Score Function |
| mc_remove_na | Remove Missing Observations from Matrix Linear Predictor |
| mc_robust_std | Robust Standard Errors for Regression Parameters |
| mc_rw | Random Walk Model Structure |
| mc_sandwich | Matrix product in sandwich form |
| mc_sensitivity | Sensitivity matrix |
| mc_sic | Score Information Criterion for Regression Components |
| mc_sic_covariance | Score Information Criterion for Covariance Components |
| mc_transform_list_bdiag | Auxiliary Function for Block-Diagonal Matrix Construction |
| mc_twin | Twin Model Covariance Structures |
| mc_updateBeta | Update Regression Parameters |
| mc_updateCov | Update Covariance Parameters |
| mc_variability | Variability Matrix |
| mc_variance_function | Variance Functions for Generalized Linear Models |
| NewBorn | Respiratory Physiotherapy on Premature Newborns |
| pAIC | Pseudo Akaike Information Criterion |
| pBIC | Pseudo Bayesian Information Criterion |
| pKLIC | Pseudo Kullback-Leibler Information Criterion |
| plogLik | Gaussian Pseudo-Loglikelihood |
| plot.mcglm | Diagnostic Plots for mcglm Objects |
| print.mcglm | Print Method for mcglm Objects |
| residuals.mcglm | Residuals for mcglm Objects |
| RJC | Rotnitzky-Jewell Information Criterion |
| soil | Soil Chemistry Properties Dataset |
| soya | Soybeans Experiment Data |
| summary.mcglm | Summary for mcglm Objects |
| vcov.mcglm | Variance-Covariance Matrix for mcglm Objects |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.