The 'midasml' package implements estimation and prediction methods for high-dimensional mixed-frequency (MIDAS) time-series and panel data regression models. The regularized MIDAS models are estimated using orthogonal (e.g. Legendre) polynomials and sparse-group LASSO (sg-LASSO) estimator. For more information on the 'midasml' approach see Babii, Ghysels, and Striaukas (2021, JBES forthcoming) <doi:10.1080/07350015.2021.1899933>. The package is equipped with the fast implementation of the sg-LASSO estimator by means of proximal block coordinate descent. High-dimensional mixed frequency time-series data can also be easily manipulated with functions provided in the package.
Package details |
|
---|---|
Author | Jonas Striaukas [cre, aut], Andrii Babii [aut], Eric Ghysels [aut], Alex Kostrov [ctb] (Contributions to analytical gradients for non-linear low-dimensional MIDAS estimation code) |
Maintainer | Jonas Striaukas <jonas.striaukas@gmail.com> |
License | GPL (>= 2) |
Version | 0.1.10 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.