mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines

An interface to build machine learning models for classification and regression problems. 'mikropml' implements the ML pipeline described by Topçuoğlu et al. (2020) <doi:10.1128/mBio.00434-20> with reasonable default options for data preprocessing, hyperparameter tuning, cross-validation, testing, model evaluation, and interpretation steps. See the website <https://www.schlosslab.org/mikropml/> for more information, documentation, and examples.

Package details

AuthorBegüm Topçuoğlu [aut] (<https://orcid.org/0000-0003-3140-537X>), Zena Lapp [aut] (<https://orcid.org/0000-0003-4674-2176>), Kelly Sovacool [aut, cre] (<https://orcid.org/0000-0003-3283-829X>), Evan Snitkin [aut] (<https://orcid.org/0000-0001-8409-278X>), Jenna Wiens [aut] (<https://orcid.org/0000-0002-1057-7722>), Patrick Schloss [aut] (<https://orcid.org/0000-0002-6935-4275>), Nick Lesniak [ctb] (<https://orcid.org/0000-0001-9359-5194>), Courtney Armour [ctb] (<https://orcid.org/0000-0002-5250-1224>), Sarah Lucas [ctb] (<https://orcid.org/0000-0003-1676-5801>)
MaintainerKelly Sovacool <sovacool@umich.edu>
LicenseMIT + file LICENSE
Version1.6.1
URL https://www.schlosslab.org/mikropml/ https://github.com/SchlossLab/mikropml
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("mikropml")

Try the mikropml package in your browser

Any scripts or data that you put into this service are public.

mikropml documentation built on Aug. 21, 2023, 5:10 p.m.