Simulation results detailed in Esarey and Menger (2019) <doi:10.1017/psrm.2017.42> demonstrate that cluster adjusted t statistics (CATs) are an effective method for correcting standard errors in scenarios with a small number of clusters. The 'mmiCATs' package offers a suite of tools for working with CATs. The mmiCATs() function initiates a 'shiny' web application, facilitating the analysis of data utilizing CATs, as implemented in the cluster.im.glm() function from the 'clusterSEs' package. Additionally, the pwr_func_lmer() function is designed to simplify the process of conducting simulations to compare mixed effects models with CATs models. For educational purposes, the CloseCATs() function launches a 'shiny' application card game, aimed at enhancing users' understanding of the conditions under which CATs should be preferred over random intercept models.
Package details |
|
---|---|
Author | Mackson Ncube [aut, cre], mightymetrika, LLC [cph, fnd] |
Maintainer | Mackson Ncube <macksonncube.stats@gmail.com> |
License | MIT + file LICENSE |
Version | 0.1.1 |
URL | https://github.com/mightymetrika/mmiCATs |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.