Estimation of multivariate normal (MVN) and student-t data of arbitrary dimension where the pattern of missing data is monotone. See Pantaleo and Gramacy (2010) <doi:10.48550/arXiv.0907.2135>. Through the use of parsimonious/shrinkage regressions (plsr, pcr, lasso, ridge, etc.), where standard regressions fail, the package can handle a nearly arbitrary amount of missing data. The current version supports maximum likelihood inference and a full Bayesian approach employing scale-mixtures for Gibbs sampling. Monotone data augmentation extends this Bayesian approach to arbitrary missingness patterns. A fully functional standalone interface to the Bayesian lasso (from Park & Casella), Normal-Gamma (from Griffin & Brown), Horseshoe (from Carvalho, Polson, & Scott), and ridge regression with model selection via Reversible Jump, and student-t errors (from Geweke) is also provided.
Package details |
|
---|---|
Author | Robert B. Gramacy [aut, cre] (with Fortran contributions from Cleve Moler (dpotri/LINPACK) as updated by Berwin A. Turlach (qpgen2/quadprog)) |
Maintainer | Robert B. Gramacy <rbg@vt.edu> |
License | LGPL |
Version | 1.9-21 |
URL | https://bobby.gramacy.com/r_packages/monomvn/ |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.