multilevelcoda: Estimate Bayesian Multilevel Models for Compositional Data

Implement Bayesian multilevel modelling for compositional data. Compute multilevel compositional data and perform log-ratio transforms at between and within-person levels, fit Bayesian multilevel models for compositional predictors and outcomes, and run post-hoc analyses such as isotemporal substitution models. References: Le, Stanford, Dumuid, and Wiley (2025) <doi:10.1037/met0000750>, Le, Dumuid, Stanford, and Wiley (2024) <doi:10.48550/arXiv.2411.12407>.

Package details

AuthorFlora Le [aut, cre] (ORCID: <https://orcid.org/0000-0003-0089-8167>), Joshua F. Wiley [aut] (ORCID: <https://orcid.org/0000-0002-0271-6702>)
MaintainerFlora Le <floralebui@gmail.com>
LicenseGPL (>= 3)
Version1.3.2
URL https://florale.github.io/multilevelcoda/ https://github.com/florale/multilevelcoda
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("multilevelcoda")

Try the multilevelcoda package in your browser

Any scripts or data that you put into this service are public.

multilevelcoda documentation built on June 8, 2025, 1:52 p.m.