Implement and enhance the performance of spatial fuzzy clustering using Fuzzy Geographically Weighted Clustering with various optimization algorithms, mainly from Xin She Yang (2014) <ISBN:9780124167438> with book entitled Nature-Inspired Optimization Algorithms. The optimization algorithm is useful to tackle the disadvantages of clustering inconsistency when using the traditional approach. The distance measurements option is also provided in order to increase the quality of clustering results. The Fuzzy Geographically Weighted Clustering with nature inspired optimisation algorithm was firstly developed by Arie Wahyu Wijayanto and Ayu Purwarianti (2014) <doi:10.1109/CITSM.2014.7042178> using Artificial Bee Colony algorithm.
Package details |
|
---|---|
Author | Bahrul Ilmi Nasution [aut, cre], Robert Kurniawan [aut], Rezzy Eko Caraka [aut] |
Maintainer | Bahrul Ilmi Nasution <bahrulnst@gmail.com> |
License | GPL-3 |
Version | 0.2.2 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.