Sample sizes are often small due to hard to reach target populations, rare target events, time constraints, limited budgets, or ethical considerations. Two statistical methods with promising performance in small samples are the nonparametric bootstrap test with pooled resampling method, which is the focus of Dwivedi, Mallawaarachchi, and Alvarado (2017) <doi:10.1002/sim.7263>, and informative hypothesis testing, which is implemented in the 'restriktor' package. The 'npboottprmFBar' package uses the nonparametric bootstrap test with pooled resampling method to implement informative hypothesis testing. The bootFbar() function can be used to analyze data with this method and the persimon() function can be used to conduct performance simulations on type-one error and statistical power.
Package details |
|
---|---|
Author | Mackson Ncube [aut, cre], mightymetrika, LLC [cph, fnd] |
Maintainer | Mackson Ncube <macksonncube.stats@gmail.com> |
License | MIT + file LICENSE |
Version | 0.2.0 |
URL | https://github.com/mightymetrika/npboottprmFBar |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.