Optimal Subset Cardinality Regression (OSCAR) models offer regularized linear regression using the L0-pseudonorm, conventionally known as the number of non-zero coefficients. The package estimates an optimal subset of features using the L0-penalization via cross-validation, bootstrapping and visual diagnostics. Effective Fortran implementations are offered along the package for finding optima for the DC-decomposition, which is used for transforming the discrete L0-regularized optimization problem into a continuous non-convex optimization task. These optimization modules include DBDC ('Double Bundle method for nonsmooth DC optimization' as described in Joki et al. (2018) <doi:10.1137/16M1115733>) and LMBM ('Limited Memory Bundle Method for large-scale nonsmooth optimization' as in Haarala et al. (2004) <doi:10.1080/10556780410001689225>). The OSCAR models are comprehensively exemplified in Halkola et al. (2023) <doi:10.1371/journal.pcbi.1010333>). Multiple regression model families are supported: Cox, logistic, and Gaussian.
Package details |
|
---|---|
Author | Teemu Daniel Laajala [aut, cre] (<https://orcid.org/0000-0002-7016-7354>), Kaisa Joki [aut], Anni Halkola [aut] |
Maintainer | Teemu Daniel Laajala <teelaa@utu.fi> |
License | GPL-3 |
Version | 1.2.1 |
URL | https://github.com/Syksy/oscar |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.