Man pages for polle
Policy Learning

conditionalConditional Policy Evaluation
control_blipControl arguments for doubly robust blip-learning
control_drqlControl arguments for doubly robust Q-learning
control_earlControl arguments for Efficient Augmentation and Relaxation...
control_owlControl arguments for Outcome Weighted Learning
control_ptlControl arguments for Policy Tree Learning
control_rwlControl arguments for Residual Weighted Learning
copy_policy_dataCopy Policy Data Object
fit_g_functionsFit g-functions
get_actionsGet Actions
get_action_setGet Action Set
get_g_functionsGet g-functions
get_historyGet History Object
get_history_namesGet history variable names
get_idGet IDs
get_id_stageGet IDs and Stages
get_KGet Maximal Stages
get_nGet Number of Observations
get_policyGet Policy
get_policy_actionsGet Policy Actions
get_policy_functionsGet Policy Functions
get_policy_objectGet Policy Object
get_q_functionsGet Q-functions
get_stage_action_setsGet Stage Action Sets
get_utilityGet the Utility
g_modelg_model class object
nuisance_functionsNuisance Functions
partialTrim Number of Stages
plot.policy_dataPlot policy data for given policies
plot.policy_evalPlot histogram of the influence curve for a 'policy_eval'...
policyPolicy-class
policy_dataCreate Policy Data Object
policy_defDefine Policy
policy_evalPolicy Evaluation
policy_learnCreate Policy Learner
polle-packagepolle: Policy Learning
predict.nuisance_functionsPredict g-functions and Q-functions
q_modelq_model class object
reexportsObjects exported from other packages
sim_multi_stageSimulate Multi-Stage Data
sim_single_stageSimulate Single-Stage Data
sim_single_stage_multi_actionsSimulate Single-Stage Multi-Action Data
sim_two_stageSimulate Two-Stage Data
sim_two_stage_multi_actionsSimulate Two-Stage Multi-Action Data
subset_idSubset Policy Data on ID
polle documentation built on May 29, 2024, 1:15 a.m.