Man pages for power4mome
Power Analysis for Moderation and Mediation

do_testDo a Test on Each Replication
fit_modelFit a Model to a List of Datasets
gen_bootGenerate Bootstrap Estimates
gen_mcGenerate Monte Carlo Estimates
plot.power_curvePlot a Power Curve
plot.x_from_powerPlot The Results of 'x_from_power'
pop_es_yamlParse YAML-Stye Values For 'pop_es'
power4mome-packagepower4mome: Power Analysis for Moderation and Mediation
power4testEstimate the Power of a Test
power4test_by_esPower By Effect Sizes
power4test_by_nPower By Sample Sizes
power_curvePower Curve
predict.power_curvePredict Method for a 'power_curve' Object
ptable_popGenerate the Population Model
rbeta_rsRandom Variable From a Beta Distribution
rbeta_rs2Random Variable From a Beta Distribution (User Range)
rbinary_rsRandom Binary Variable
rejection_ratesRejection Rates
rexp_rsRandom Variable From an Exponential Distribution
rlnorm_rsRandom Variable From a Lognormal Distribution
rpgnorm_rsRandom Variable From a Generalized Normal Distribution
rt_rsRandom Variable From a t Distribution
runif_rsRandom Variable From a Uniform Distribution
sim_dataSimulate Datasets Based on a Model
sim_outCreate a 'sim_out' Object
summarize_testsSummarize Test Results
summary.x_from_powerSummarize 'x_from_power' Results
test_cond_indirectTest a Conditional Indirect Effect
test_cond_indirect_effectsTest Several Conditional Indirect Effects
test_index_of_momeTest a Moderated Mediation Effect
test_indirect_effectTest an Indirect Effect
test_k_indirect_effectsTest Several Indirect Effects
test_moderationTest All Moderation Effects
test_parametersTest All Free Parameters
x_from_powerSample Size and Effect Size Determination
power4mome documentation built on Sept. 9, 2025, 5:35 p.m.