Nothing
Implements linear and generalized linear models for provider profiling, incorporating both fixed and random effects. For large-scale providers, the linear profiled-based method and the SerBIN method for binary data reduce the computational burden. Provides post-modeling features, such as indirect and direct standardization measures, hypothesis testing, confidence intervals, and post-estimation visualization. For more information, see Wu et al. (2022) <doi:10.1002/sim.9387>.
Package details |
|
---|---|
Author | Xiaohan Liu [aut, cre], Lingfeng Luo [aut], Yubo Shao [aut], Xiangeng Fang [aut], Wenbo Wu [aut], Kevin He [aut] |
Maintainer | Xiaohan Liu <xhliuu@umich.edu> |
License | MIT + file LICENSE |
Version | 1.0.1 |
URL | https://github.com/UM-KevinHe/pprof |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.