quartets: Datasets to Help Teach Statistics

In the spirit of Anscombe's quartet, this package includes datasets that demonstrate the importance of visualizing your data, the importance of not relying on statistical summary measures alone, and why additional assumptions about the data generating mechanism are needed when estimating causal effects. The package includes "Anscombe's Quartet" (Anscombe 1973) <doi:10.1080/00031305.1973.10478966>, D'Agostino McGowan & Barrett (2023) "Causal Quartet" <doi:10.48550/arXiv.2304.02683>, "Datasaurus Dozen" (Matejka & Fitzmaurice 2017), "Interaction Triptych" (Rohrer & Arslan 2021) <doi:10.1177/25152459211007368>, "Rashomon Quartet" (Biecek et al. 2023) <doi:10.48550/arXiv.2302.13356>, and Gelman "Variation and Heterogeneity Causal Quartets" (Gelman et al. 2023) <doi:10.48550/arXiv.2302.12878>.

Getting started

Package details

AuthorLucy D'Agostino McGowan [aut, cre] (<https://orcid.org/0000-0002-6983-2759>)
MaintainerLucy D'Agostino McGowan <lucydagostino@gmail.com>
LicenseMIT + file LICENSE
Version0.1.1
URL https://github.com/r-causal/quartets https://r-causal.github.io/quartets/
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("quartets")

Try the quartets package in your browser

Any scripts or data that you put into this service are public.

quartets documentation built on April 14, 2023, 12:25 a.m.