Implements the algorithm by Pourahmadi and Wang (2015) <doi:10.1016/j.spl.2015.06.015> for generating a random p x p correlation matrix. Briefly, the idea is to represent the correlation matrix using Cholesky factorization and p(p-1)/2 hyperspherical coordinates (i.e., angles), sample the angles from a particular distribution and then convert to the standard correlation matrix form. The angles are sampled from a distribution with pdf proportional to sin^k(theta) (0 < theta < pi, k >= 1) using the efficient sampling algorithm described in Enes Makalic and Daniel F. Schmidt (2018) <arXiv:1809.05212>.
Package details |
|
---|---|
Author | Daniel F. Schmidt [aut, cph, cre], Enes Makalic [aut, cph] |
Maintainer | Daniel F. Schmidt <daniel.schmidt@monash.edu> |
License | GPL (>= 3) |
Version | 1.0 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.