Functions to fit Gaussian linear model by maximising the residual log likelihood where the covariance structure can be written as a linear combination of known matrices. Can be used for multivariate models and random effects models. Easy straight forward manner to specify random effects models, including random interactions. Code now optimised to use Sherman Morrison Woodbury identities for matrix inversion in random effects models. We've added the ability to fit models using any kernel as well as a function to return the mean and covariance of random effects conditional on the data (best linear unbiased predictors, BLUPs). Clifford and McCullagh (2006) <https://www.r-project.org/doc/Rnews/Rnews_2006-2.pdf>.
Package details |
|
---|---|
Author | David Clifford [aut], Peter McCullagh [aut], HJ Auinger [ctb], Karl W Broman [ctb, cre] (<https://orcid.org/0000-0002-4914-6671>) |
Maintainer | Karl W Broman <broman@wisc.edu> |
License | GPL-2 |
Version | 1.3-21 |
URL | https://github.com/kbroman/regress |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.