rsparse: Statistical Learning on Sparse Matrices

Implements many algorithms for statistical learning on sparse matrices - matrix factorizations, matrix completion, elastic net regressions, factorization machines. Also 'rsparse' enhances 'Matrix' package by providing methods for multithreaded <sparse, dense> matrix products and native slicing of the sparse matrices in Compressed Sparse Row (CSR) format. List of the algorithms for regression problems: 1) Elastic Net regression via Follow The Proximally-Regularized Leader (FTRL) Stochastic Gradient Descent (SGD), as per McMahan et al(, <doi:10.1145/2487575.2488200>) 2) Factorization Machines via SGD, as per Rendle (2010, <doi:10.1109/ICDM.2010.127>) List of algorithms for matrix factorization and matrix completion: 1) Weighted Regularized Matrix Factorization (WRMF) via Alternating Least Squares (ALS) - paper by Hu, Koren, Volinsky (2008, <doi:10.1109/ICDM.2008.22>) 2) Maximum-Margin Matrix Factorization via ALS, paper by Rennie, Srebro (2005, <doi:10.1145/1102351.1102441>) 3) Fast Truncated Singular Value Decomposition (SVD), Soft-Thresholded SVD, Soft-Impute matrix completion via ALS - paper by Hastie, Mazumder et al. (2014, <doi:10.48550/arXiv.1410.2596>) 4) Linear-Flow matrix factorization, from 'Practical linear models for large-scale one-class collaborative filtering' by Sedhain, Bui, Kawale et al (2016, ISBN:978-1-57735-770-4) 5) GlobalVectors (GloVe) matrix factorization via SGD, paper by Pennington, Socher, Manning (2014, <https://aclanthology.org/D14-1162/>) Package is reasonably fast and memory efficient - it allows to work with large datasets - millions of rows and millions of columns. This is particularly useful for practitioners working on recommender systems.

Getting started

Package details

AuthorDmitriy Selivanov [aut, cre, cph] (<https://orcid.org/0000-0001-5413-1506>), David Cortes [ctb], Drew Schmidt [ctb] (configure script for BLAS, LAPACK detection), Wei-Chen Chen [ctb] (configure script and work on linking to float package)
MaintainerDmitriy Selivanov <selivanov.dmitriy@gmail.com>
LicenseGPL (>= 2)
Version0.5.2
URL https://github.com/dselivanov/rsparse
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("rsparse")

Try the rsparse package in your browser

Any scripts or data that you put into this service are public.

rsparse documentation built on June 28, 2024, 5:06 p.m.