rvif: Collinearity Detection using Redefined Variance Inflation Factor and Graphical Methods

The detection of troubling approximate collinearity in a multiple linear regression model is a classical problem in Econometrics. The objective of this package is to detect it using the variance inflation factor redefined and the scatterplot between the variance inflation factor and the coefficient of variation. For more details see Salmerón R., García C.B. and García J. (2018) <doi:10.1080/00949655.2018.1463376>, Salmerón, R., Rodríguez, A. and García C. (2020) <doi:10.1007/s00180-019-00922-x>, Salmerón, R., García, C.B, Rodríguez, A. and García, C. (2022) <doi:10.32614/RJ-2023-010>, Salmerón, R., García, C.B. and García, J. (2025) <doi:10.1007/s10614-024-10575-8> and Salmerón, R., García, C.B, García J. (2023, working paper) <doi:10.48550/arXiv.2005.02245>. You can also view the package vignette using 'browseVignettes("rvif")', the package website using 'browseURL(system.file("docs/index.html", package = "rvif"))' or version control on GitHub (<https://github.com/rnoremlas/rvif_package>).

Package details

AuthorR. Salmerón [aut, cre], C.B. García [aut]
MaintainerR. Salmerón <romansg@ugr.es>
LicenseGPL (>= 2)
Version3.1
URL http://colldetreat.r-forge.r-project.org/ https://github.com/rnoremlas/rvif_package
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("rvif")

Try the rvif package in your browser

Any scripts or data that you put into this service are public.

rvif documentation built on Sept. 9, 2025, 5:38 p.m.