Provides functionality to fit a zero-inflated estimator for small area estimation. This estimator is a combines a linear mixed effects regression model and a logistic mixed effects regression model via a two-stage modeling approach. The estimator's mean squared error is estimated via a parametric bootstrap method. Chandra and others (2012, <doi:10.1080/03610918.2011.598991>) introduce and describe this estimator and mean squared error estimator. White and others (2024+, <doi:10.48550/arXiv.2402.03263>) describe the applicability of this estimator to estimation of forest attributes and further assess the estimator's properties.
Package details |
|
---|---|
Author | Josh Yamamoto [aut, cre], Dinan Elsyad [aut], Grayson White [aut], Julian Schmitt [aut], Niels Korsgaard [aut], Kelly McConville [aut], Kate Hu [aut] |
Maintainer | Josh Yamamoto <joshuayamamoto5@gmail.com> |
License | MIT + file LICENSE |
Version | 0.2.0 |
URL | https://harvard-ufds.github.io/saeczi/ |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.