The implementation of a forecasting-specific tree-based model that is in particular suitable for global time series forecasting, as proposed in Godahewa et al. (2022) <arXiv:2211.08661v1>. The model uses the concept of Self Exciting Threshold Autoregressive (SETAR) models to define the node splits and thus, the model is named SETAR-Tree. The SETAR-Tree uses some time-series-specific splitting and stopping procedures. It trains global pooled regression models in the leaves allowing the models to learn cross-series information. The depth of the tree is controlled by conducting a statistical linearity test as well as measuring the error reduction percentage at each node split. Thus, the SETAR-Tree requires minimal external hyperparameter tuning and provides competitive results under its default configuration. A forest is developed by extending the SETAR-Tree. The SETAR-Forest combines the forecasts provided by a collection of diverse SETAR-Trees during the forecasting process.
Package details |
|
---|---|
Author | Rakshitha Godahewa [cre, aut, cph], Christoph Bergmeir [aut], Daniel Schmidt [aut], Geoffrey Webb [ctb] |
Maintainer | Rakshitha Godahewa <rakshithagw@gmail.com> |
License | MIT + file LICENSE |
Version | 0.2.1 |
URL | https://github.com/rakshitha123/setartree |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.