Nothing
Efficient Markov chain Monte Carlo (MCMC) algorithms for fully Bayesian estimation of time-varying parameter models with shrinkage priors, both dynamic and static. Details on the algorithms used are provided in Bitto and Frühwirth-Schnatter (2019) <doi:10.1016/j.jeconom.2018.11.006> and Cadonna et al. (2020) <doi:10.3390/econometrics8020020> and Knaus and Frühwirth-Schnatter (2023) <doi:10.48550/arXiv.2312.10487>. For details on the package, please see Knaus et al. (2021) <doi:10.18637/jss.v100.i13>.
Package details |
|
---|---|
Author | Peter Knaus [aut, cre] (<https://orcid.org/0000-0001-6498-7084>), Angela Bitto-Nemling [aut], Annalisa Cadonna [aut] (<https://orcid.org/0000-0003-0360-7628>), Sylvia Frühwirth-Schnatter [aut] (<https://orcid.org/0000-0003-0516-5552>), Daniel Winkler [ctb], Kemal Dingic [ctb] |
Maintainer | Peter Knaus <peter.knaus@wu.ac.at> |
License | GPL (>= 2) |
Version | 3.0.1 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.