shrinkem: Approximate Bayesian Regularization for Parsimonious Estimates

Approximate Bayesian regularization using Gaussian approximations. The input is a vector of estimates and a Gaussian error covariance matrix of the key parameters. Bayesian shrinkage is then applied to obtain parsimonious solutions. The method is described on Karimova, van Erp, Leenders, and Mulder (2024) <DOI:10.31234/osf.io/2g8qm>. Gibbs samplers are used for model fitting. The shrinkage priors that are supported are Gaussian (ridge) priors, Laplace (lasso) priors (Park and Casella, 2008 <DOI:10.1198/016214508000000337>), and horseshoe priors (Carvalho, et al., 2010; <DOI:10.1093/biomet/asq017>). These priors include an option for grouped regularization of different subsets of parameters (Meier et al., 2008; <DOI:10.1111/j.1467-9868.2007.00627.x>). F priors are used for the penalty parameters lambda^2 (Mulder and Pericchi, 2018 <DOI:10.1214/17-BA1092>). This correspond to half-Cauchy priors on lambda (Carvalho, Polson, Scott, 2010 <DOI:10.1093/biomet/asq017>).

Getting started

Package details

AuthorJoris Mulder [aut, cre], Diana Karimova [aut, ctb], Sara van Erp [ctb]
MaintainerJoris Mulder <j.mulder3@tilburguniversity.edu>
LicenseGPL (>= 3)
Version0.2.0
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("shrinkem")

Try the shrinkem package in your browser

Any scripts or data that you put into this service are public.

shrinkem documentation built on Oct. 5, 2024, 5:06 p.m.