sstvars: Toolkit for Reduced Form and Structural Smooth Transition Vector Autoregressive Models

Penalized and non-penalized maximum likelihood estimation of smooth transition vector autoregressive models with various types of transition weight functions, conditional distributions, and identification methods. Constrained estimation with various types of constraints is available. Residual based model diagnostics, forecasting, simulations, and calculation of impulse response functions, generalized impulse response functions, and generalized forecast error variance decompositions. See Heather Anderson, Farshid Vahid (1998) <doi:10.1016/S0304-4076(97)00076-6>, Helmut Lütkepohl, Aleksei Netšunajev (2017) <doi:10.1016/j.jedc.2017.09.001>, Markku Lanne, Savi Virolainen (2025) <doi:10.48550/arXiv.2403.14216>, Savi Virolainen (2025) <doi:10.48550/arXiv.2404.19707>.

Package details

AuthorSavi Virolainen [aut, cre] (<https://orcid.org/0000-0002-5075-6821>)
MaintainerSavi Virolainen <savi.virolainen@helsinki.fi>
LicenseGPL-3
Version1.1.6
URL https://github.com/saviviro/sstvars
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("sstvars")

Try the sstvars package in your browser

Any scripts or data that you put into this service are public.

sstvars documentation built on April 11, 2025, 5:47 p.m.