Estimates the authors or speakers of texts. Methods developed in Huang, Perry, and Spirling (2020) <doi:10.1017/pan.2019.49>. The model is built on a Bayesian framework in which the distinctiveness of each speaker is defined by how different, on average, the speaker's terms are to everyone else in the corpus of texts. An optional cross-validation method is implemented to select the subset of terms that generate the most accurate speaker predictions. Once a set of terms is selected, the model can be estimated. Speaker distinctiveness and term influence can be recovered from parameters in the model using package functions. Once fitted, the model can be used to predict authorship of new texts.
Package details |
|
---|---|
Author | Christian Baehr [aut, cre, cph], Arthur Spirling [aut, cph], Leslie Huang [aut] |
Maintainer | Christian Baehr <cbaehr@princeton.edu> |
License | GPL-3 |
Version | 0.1 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.