tidylearn: A Unified Tidy Interface to R's Machine Learning Ecosystem

Provides a unified tidyverse-compatible interface to R's machine learning packages. Wraps established implementations from 'glmnet', 'randomForest', 'xgboost', 'e1071', 'rpart', 'gbm', 'nnet', 'cluster', 'dbscan', and others - providing consistent function signatures, tidy tibble output, and unified 'ggplot2'-based visualization. The underlying algorithms are unchanged; 'tidylearn' simply makes them easier to use together. Access raw model objects via the $fit slot for package-specific functionality. Methods include random forests Breiman (2001) <doi:10.1023/A:1010933404324>, LASSO regression Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>, elastic net Zou and Hastie (2005) <doi:10.1111/j.1467-9868.2005.00503.x>, support vector machines Cortes and Vapnik (1995) <doi:10.1007/BF00994018>, and gradient boosting Friedman (2001) <doi:10.1214/aos/1013203451>.

Package details

AuthorCesaire Tobias [aut, cre]
MaintainerCesaire Tobias <cesaire@sheetsolved.com>
LicenseMIT + file LICENSE
Version0.1.0
URL https://github.com/ces0491/tidylearn
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("tidylearn")

Try the tidylearn package in your browser

Any scripts or data that you put into this service are public.

tidylearn documentation built on Feb. 6, 2026, 5:07 p.m.