Tool for easy and efficient discretization of continuous and categorical data. The package calculates the most optimal binning of a given explanatory variable with respect to a user-specified target variable. The purpose is to assign a unique Weight-of-Evidence value to each of the calculated binpoints in order to recode the original variable. The package allows users to impose certain restrictions on the functional form on the resulting binning while maximizing the overall information value in the original data. The package is well suited for logistic scoring models where input variables may be subject to restrictions such as linearity by e.g. regulatory authorities. An excellent source describing in detail the development of scorecards, and the role of Weight-of-Evidence coding in credit scoring is (Siddiqi 2006, ISBN: 978–0-471–75451–0). The package utilizes the discrete nature of decision trees and Isotonic Regression to accommodate the trade-off between flexible functional forms and maximum information value.
Package details |
|
---|---|
Author | Daniel Safai |
Maintainer | Daniel Safai <danielsafai@gmail.com> |
License | GPL (>= 2) |
Version | 0.2.1 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.