vimpclust: Variable Importance in Clustering

An implementation of methods related to sparse clustering and variable importance in clustering. The package currently allows to perform sparse k-means clustering with a group penalty, so that it automatically selects groups of numerical features. It also allows to perform sparse clustering and variable selection on mixed data (categorical and numerical features), by preprocessing each categorical feature as a group of numerical features. Several methods for visualizing and exploring the results are also provided. M. Chavent, J. Lacaille, A. Mourer and M. Olteanu (2020)<https://www.esann.org/sites/default/files/proceedings/2020/ES2020-103.pdf>.

Package details

AuthorAlex Mourer [aut], Marie Chavent [aut, ths], Madalina Olteanu [aut, ths, cre]
MaintainerMadalina Olteanu <madalina.olteanu@dauphine.psl.eu>
LicenseGPL-3
Version0.1.0
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("vimpclust")

Try the vimpclust package in your browser

Any scripts or data that you put into this service are public.

vimpclust documentation built on Jan. 8, 2021, 5:34 p.m.