xega: Extended Evolutionary and Genetic Algorithms

Implementation of a scalable, highly configurable, and e(x)tended architecture for (e)volutionary and (g)enetic (a)lgorithms. Multiple representations (binary, real-coded, permutation, and derivation-tree), a rich collection of genetic operators, as well as an extended processing pipeline are provided for genetic algorithms (Goldberg, D. E. (1989, ISBN:0-201-15767-5)), differential evolution (Price, Kenneth V., Storn, Rainer M. and Lampinen, Jouni A. (2005) <doi:10.1007/3-540-31306-0>), simulated annealing (Aarts, E., and Korst, J. (1989, ISBN:0-471-92146-7)), grammar-based genetic programming (Geyer-Schulz (1997, ISBN:978-3-7908-0830-X)), grammatical evolution (Ryan, C., O'Neill, M., and Collins, J. J. (2018) <doi:10.1007/978-3-319-78717-6>), and grammatical differential evolution (O'Neill, M. and Brabazon, A. (2006) in Arabinia, H. (2006, ISBN:978-193-241596-3). All algorithms reuse basic adaptive mechanisms for performance optimization. For 'xega''s architecture, see Geyer-Schulz, A. (2025) <doi:10.5445/IR/1000187255>. Sequential or parallel execution (on multi-core machines, local clusters, and high-performance computing environments) is available for all algorithms. See <https://github.com/ageyerschulz/xega/tree/main/examples/executionModel>.

Getting started

Package details

AuthorAndreas Geyer-Schulz [aut, cre] (ORCID: <https://orcid.org/0009-0000-5237-3579>)
MaintainerAndreas Geyer-Schulz <Andreas.Geyer-Schulz@kit.edu>
LicenseMIT + file LICENSE
Version0.9.0.23
URL https://github.com/ageyerschulz/xega
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("xega")

Try the xega package in your browser

Any scripts or data that you put into this service are public.

xega documentation built on Feb. 17, 2026, 5:07 p.m.