xrf: eXtreme RuleFit

An implementation of the RuleFit algorithm as described in Friedman & Popescu (2008) <doi:10.1214/07-AOAS148>. eXtreme Gradient Boosting ('XGBoost') is used to build rules, and 'glmnet' is used to fit a sparse linear model on the raw and rule features. The result is a model that learns similarly to a tree ensemble, while often offering improved interpretability and achieving improved scoring runtime in live applications. Several algorithms for reducing rule complexity are provided, most notably hyperrectangle de-overlapping. All algorithms scale to several million rows and support sparse representations to handle tens of thousands of dimensions.

Getting started

Package details

AuthorKarl Holub [aut, cre]
MaintainerKarl Holub <karljholub@gmail.com>
LicenseMIT + file LICENSE
Version0.2.2
URL https://github.com/holub008/xrf
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("xrf")

Try the xrf package in your browser

Any scripts or data that you put into this service are public.

xrf documentation built on Oct. 4, 2022, 9:06 a.m.