Man pages for CDU-data-science-team/experienceAnalysis
Helper Functions for Text Mining

calc_accuracy_per_classCalculate classifier accuracy for each class and group
calc_bigrams_networkCreate and count bigrams
calc_bing_word_countsCounts of words with a positive or negative sentiment
calc_confusion_matrixCalculate the confusion matrix
calc_net_sentiment_nrcCalculate "net sentiment" in a text
calc_net_sentiment_per_tagCalculate "net positive" and "net negative" sentiment in a...
calc_tfidf_ngramsCalculate TF-IDFs for unigrams or bigrams
get_dictionaryCheck for sentiment dictionaries
pipePipe operator
plot_bigrams_networkPlot a network of bigrams
plot_bing_word_countsPlot bar plots of the most frequent words.
plot_confusion_matrixPlot a confusion matrix
plot_net_sentiment_long_nrcPlot sentiment counts in a text
plot_net_sentiment_per_tagPlot "net sentiment" in a text
plot_tfidf_ngramsPlot the _n_-grams with the highest TF-IDFs
prep_sentiments_nrcPulls NRC Sentiments
prep_tidy_textUnnest tokens for each label in a labelled text
tidy_filter_nullFilter data frame when filter can be 'NULL'
tidy_net_sentiment_nrcOrder sentiment occurrence table by sentiment counts
CDU-data-science-team/experienceAnalysis documentation built on Dec. 17, 2021, 12:53 p.m.