| allSeasons | Get names of seasons |
| as_date-methods | Replace methods for as_date in package pcts |
| as_datetime-methods | Methods for as_datetime in package pcts |
| autocorrelations-methods | Compute autocorrelations and periodic autocorrelations |
| autocovariances-methods | Compute autocovariances and periodic autocovariances |
| availStart | Time of first or last non-NA value |
| backwardPartialCoefficients-methods | Compute periodic backward partial coefficients |
| backwardPartialVariances-methods | Compute periodic backward partial variances |
| BareCycle-class | Class BareCycle |
| BasicCycle-class | Class BasicCycle |
| BuiltinCycle-class | Class '"BuiltinCycle"' and its subclasses in package 'pcts' |
| Cyclic | Create objects from class Cyclic |
| Cyclic-class | Class '"Cyclic"' |
| dataFranses1996 | Example data from Franses (1996) |
| date_ass-methods | Replace methods for date in package pcts |
| ex1f | An example PAR autocorrelation function |
| filterCoef-methods | Get the coefficients of a periodic filter |
| filterPolyCoef-methods | ~~ Dummy title ~~ |
| filterPoly-methods | ~~ Dummy title ~~ |
| fitPM | Fit periodic time series models |
| FittedPeriodicArmaModel-class | Class FittedPeriodicArmaModel |
| FittedPeriodicArModel-class | Class FittedPeriodicArModel |
| fit_trigPAR_optim | Fit a subset trigonometric PAR model |
| four_stocks_since2016_01_01 | Data for four stocks since 2016-01-01 |
| Fraser2017 | Fraser River at Hope, mean monthly flow |
| head-methods | Methods for function head() in package pcts |
| LegacyPeriodicFilterModel-class | Class LegacyPeriodicFilterModel |
| maxLag-methods | Methods for function maxLag() in package 'pcts' |
| mcOptimCore-class | Class mcOptimCore |
| mC.ss | Create environment for mc-fitting |
| meanvarcheck | Asymptotic covariance matrix of periodic mean |
| modelCycle | Get the cycle of a periodic object |
| ModelCycleSpec-class | Class ModelCycleSpec |
| nCycles | Basic information about periodic ts objects |
| nSeasons-methods | Number of seasons of a periodic object |
| nTicks-methods | Number of observations in a time series |
| num2pcpar | Fit PAR model using sample autocorrelations |
| parcovmatlist | Compute asymptotic covariance matrix for PAR model |
| partialAutocorrelations-methods | Compute periodic partial autocorrelations |
| partialAutocovariances-methods | Compute periodic partial autocovariances |
| partialCoefficients-methods | Compute periodic partial coefficients |
| PartialCycle-class | Class PartialCycle |
| PartialPeriodicAutocorrelations-class | Class PartialPeriodicAutocorrelations |
| partialVariances-methods | Compute periodic partial variances |
| pc.acf2model | Fit a PC-ARMA model to a periodic autocovariance function |
| pcacfMat | Compute PAR autocovariance matrix |
| pcalg1 | Periodic Levinson-Durbin algorithm |
| pcalg1util | Give partial periodic autocorrelations or other partial... |
| pcApply-methods | Apply a function to each season |
| pcAR2acf | Compute periodic autocorrelations from PAR coefficients |
| pcarma_solve | Functions to compute various characteristics of a PCARMA... |
| pcAr.ss | Compute the sum of squares for a given PAR model |
| pcCycle-methods | Create or extract Cycle objects |
| pc.filter | Applies a periodic ARMA filter to a time series |
| pc.filter.xarma | Filter time series with periodic arma filters |
| pc.hat.h | function to compute estimates of the h weights |
| pclsdf | Fit PAR models using least squares |
| pclspiar | Fit a periodically integrated autoregressive model |
| pcMean-methods | Compute periodic mean |
| pc.modelunvec | Functions for work with a simple list specification of pcarma... |
| pcPlot | Plot periodic time series |
| pc_sdfactor | Compute normalising factors |
| pc.test.LjungBox | McLeod-Ljung-Box test for periodic white noise |
| pcTest-methods | Test for periodicity |
| pc.test.periodicity | McLeod's test for periodic autocorrelation |
| Pctime | Convert between Pctime and datetime objects |
| pcts-deprecated | Deprecated Functions and classes in Package 'pcts' |
| pcts-methods | Create objects from periodic time series classes |
| pcts_reexports | Objects exported from other packages |
| pc.wn.var.acrf | Variances of sample periodic autocorrelations |
| pdSafeParOrder | Functions for some basic operations with seasons |
| PeriodicArmaFilter-class | Class '"PeriodicArmaFilter"' |
| PeriodicArmaModel-class | Class PeriodicArmaModel |
| PeriodicArmaSpec-class | Class PeriodicArmaSpec |
| PeriodicArModel-class | Class PeriodicArModel |
| PeriodicArModel-methods | Create objects from class PeriodicArModel |
| PeriodicAutocorrelations-class | Class PeriodicAutocorrelations |
| PeriodicAutocovariances-class | Class PeriodicAutocovariances |
| PeriodicBJFilter-class | Class PeriodicBJFilter |
| PeriodicFilterModel-class | Class PeriodicFilterModel |
| PeriodicIntegratedArmaSpec-class | Class PeriodicIntegratedArmaSpec |
| PeriodicInterceptSpec-class | Class PeriodicInterceptSpec |
| PeriodicMaModel-class | Class PeriodicMaModel |
| PeriodicMTS-class | Class '"PeriodicMTS"' |
| PeriodicMTS_ts-class | Class '"PeriodicMTS_ts"' |
| PeriodicMTS_zooreg-class | Class '"PeriodicMTS_zooreg"' |
| PeriodicSPFilter-class | Class PeriodicSPFilter |
| PeriodicTimeSeries-class | Class PeriodicTimeSeries |
| PeriodicTS-class | Class '"PeriodicTS"' |
| PeriodicTS_ts-class | Class '"PeriodicTS_ts"' |
| PeriodicTS_zooreg-class | Class '"PeriodicTS_zooreg"' |
| PeriodicVector-class | Class PeriodicVector |
| permean2intercept | Convert between periodic centering and intercepts |
| permodelmf | Compute the multi-companion form of a per model |
| pi1ar2par | Convert PIAR coefficients to PAR coefficients |
| PiPeriodicArmaModel-class | Class PiPeriodicArmaModel |
| PiPeriodicArModel-class | Class PiPeriodicArModel |
| PiPeriodicMaModel-class | Class PiPeriodicMaModel |
| SamplePeriodicAutocorrelations-class | Class SamplePeriodicAutocorrelations |
| SamplePeriodicAutocovariances-class | Class SamplePeriodicAutocovariances |
| seqSeasons-methods | Methods for seqSeasons() in package pcts |
| sigmaSq-methods | Methods for 'sigmaSq' in package pcts |
| sim_parAcvf | Create a random periodic autocovariance function |
| sim_parCoef | Generate a periodic autoregression model |
| sim_pc | Simulate periodically correlated ARMA series |
| SimpleCycle-class | Class SimpleCycle |
| sim_pwn | Simulate periodic white noise |
| SiPeriodicArmaModel-class | Class SiPeriodicArmaModel |
| SiPeriodicArModel-class | Class SiPeriodicArModel |
| SiPeriodicMaModel-class | Class SiPeriodicMaModel |
| SLTypeMatrix-class | Class SLTypeMatrix |
| sl_utils | Functions for some basic operations with seasons |
| SubsetPM-class | Class SubsetPM |
| tail-methods | Methods for function tail() in package pcts |
| test_piar | Test for periodic integration |
| unitCycle_ass-methods | Methods for ”unitCycle<-” and ”unitSeason<-” in package... |
| unitCycle-methods | Methods for 'unitCycle' and 'unitSeason' in package pcts |
| Vec | Core data of periodic time series |
| VirtualPeriodicArmaModel-class | Class VirtualPeriodicArmaModel |
| VirtualPeriodicArModel-class | ~~ Dummy title ~~ |
| VirtualPeriodicAutocorrelations-class | ~~ Dummy title ~~ |
| VirtualPeriodicAutocovarianceModel-class | ~~ Dummy title ~~ |
| VirtualPeriodicAutocovariances-class | ~~ Dummy title ~~ |
| VirtualPeriodicFilterModel-class | ~~ Dummy title ~~ |
| VirtualPeriodicMaModel-class | ~~ Dummy title ~~ |
| VirtualPeriodicMeanModel-class | ~~ Dummy title ~~ |
| VirtualPeriodicModel-class | ~~ Dummy title ~~ |
| VirtualPeriodicMonicFilter-class | ~~ Dummy title ~~ |
| VirtualPeriodicStationaryModel-class | ~~ Dummy title ~~ |
| VirtualPeriodicWhiteNoiseModel-class | ~~ Dummy title ~~ |
| window | Periodic methods for base R functions |
| zoo-class | Class zoo made S4 |
| zooreg-class | Virtual S4 class zooreg |
| zzbracket_ass | Index assignments for objects from classes in package pcts |
| zzbracket_bracket-methods | Methods for function”[[” in package 'pcts' |
| zzbracket-methods | Indexing of objects from classes in package pcts |
| zzdollar-methods | Methods for function'$' in package 'pcts' |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.