LeoEgidi/pivmet: Pivotal Methods for Bayesian Relabelling and k-Means Clustering

Collection of pivotal algorithms for: relabelling the MCMC chains in order to undo the label switching problem in Bayesian mixture models; fitting sparse finite mixtures; initializing the centers of the classical k-means algorithm in order to obtain a better clustering solution. For further details see Egidi, Pappadà, Pauli and Torelli (2018b)<ISBN:9788891910233>.

Getting started

Package details

AuthorLeonardo Egidi[aut, cre], Roberta Pappadà[aut], Francesco Pauli[aut], Nicola Torelli[aut]
MaintainerLeonardo Egidi <legidi@units.it>
LicenseGPL-2
Version0.6.0
URL https://github.com/leoegidi/pivmet
Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
install.packages("remotes")
remotes::install_github("LeoEgidi/pivmet")
LeoEgidi/pivmet documentation built on June 13, 2024, 5:28 p.m.