Man pages for Stat-Cook/NURS.Data.Quality

apply_to_dataframeApply a function to every variable of a data frame.
average_missingDataframe function - measure the average rate of missingness...
average_missing_heuristicCheck if missing data rate is less than set limit.
blank_resultGenerate a blank result vector from a data frame
build_modelConstuct model via 'caret' call
compareApply a comparison function to a column of data
compare_classesChecks if there are enough examples for the number of classes...
compare_frame_classesCheck each variable of a data frame to determine if there are...
compare_frame_frequenciesTests all variables in a data frame to check values aren't...
compare_frequenciesVector function - check that no single value of a variable is...
compare_functionsDetermines which function to use for validation
encode_valuesPerform a label encoding on a categorical varaible.
is.missingVector function - identify which values are 'missing'
missing_mineAnalyze each column of a data set that has missing values for...
model_rocCalculates model quality via ROC AUC.
mutual_infoCalculate mutual information between pairs of variables in a...
prepare_dataDummy data and impute missing values for supplied data set,...
sqrt_comparisonFunction for comparing two values.
Stat-Cook/NURS.Data.Quality documentation built on Dec. 18, 2021, 2:09 p.m.