| acf_by_block | Block-wise autocorrelation function |
| add_expo | Add exposure columns to DTag data frame |
| add_RL | Add received level columns to DTag data frame |
| diff_by_ID | First-order difference for grouped data |
| grad_log_pi | Gradient of log(pi(x)) in Langevin model |
| grad_raster | Gradient of raster using bilinear interpolation |
| grad_terra | Gradient of terra raster using bilinear interpolation |
| LL_to_UTM | Transform longitude-latitude to UTM |
| make_cov | Make covariance matrix for CTCRW simulation |
| pal1 | hmmTMB colour palette |
| pal2 | moveHMM colour palette (Okabe and Ito) |
| pal3 | Color Brewer palette |
| plot_qq | Quantile-quantile plot |
| plot_rast | Plot raster |
| prep_dtag | Prepare DTag data |
| prep_dtags | Prepare data from several DTags |
| rast2df | Raster to dataframe |
| rast_to_xyz | Transform SpatRast to convenient format for grad_terra |
| regularise | Interpolate time series to regular time intervals |
| sim_BM | Simulate Brownian motion |
| sim_CIR | Simulate Cox-Ingersoll-Ross model |
| sim_CTCRW | Simulate from CTCRW process |
| sim_GBM | Simulate from geometric Brownian motion |
| sim_langevin | Simulate from Langevin process |
| sim_OU | Simulate Ornstein-Uhlenbeck process |
| sim_raster | Simulate random covariate field |
| split_ts | Split time series data at gaps |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.