auc | Get ROC AUC |
cat_vars | Get categorical column names. |
c_m | Get confusion matrix |
fbeta_score | Get F Beta Score |
features | Returns datafram e features. |
features_importance | Get features importance from a dataframe for a give target... |
find_high_correlated_columns | Get a list of high correlated features. |
fn | Get false negatives count. |
fp | Get false positives count. |
get_global_var_value | Get a global variable value |
import | Allows load a script file under global context. |
index_as_column | Add index as another regular data frame column |
load_df_from_csv | Load a csv file ito a data.frame |
num_vars | Get numneric column names. |
pca | Perform a PCA rebust analisys un er a input data frame. |
plot_cm | Plot confusion matrix |
plot_features_importance | Plot a fearures importance result. |
plot_pca | Plot a PCA analisys into a biplot. |
plot_roc | Plot ROC |
roc | Get ROC |
set_global_var_value | Creates a variable under scope global |
target | Returns a data frame with the target column. |
target_array | Returns target column values as array. |
tn | Get true negatives count. |
top_acc_features | Returns top K more important features. |
tp | Get true positives count. |
train_test_split | Makes a train test split. It Also makes a suffle by default. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.