alexanderrobitzsch/mdmb: Model Based Treatment of Missing Data

Contains model-based treatment of missing data for regression models with missing values in covariates or the dependent variable using maximum likelihood or Bayesian estimation (Ibrahim et al., 2005; <doi:10.1198/016214504000001844>; Luedtke, Robitzsch, & West, 2020a, 2020b; <doi:10.1080/00273171.2019.1640104><doi:10.1037/met0000233>). The regression model can be nonlinear (e.g., interaction effects, quadratic effects or B-spline functions). Multilevel models with missing data in predictors are available for Bayesian estimation. Substantive-model compatible multiple imputation can be also conducted.

Getting started

Package details

Author Alexander Robitzsch [aut, cre], Oliver Luedtke [aut]
Maintainer Alexander Robitzsch <robitzsch@ipn.uni-kiel.de>
License GPL (>= 2)
Version1.10-1
URL https://github.com/alexanderrobitzsch/mdmb https://sites.google.com/view/alexander-robitzsch/software
Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
install.packages("remotes")
remotes::install_github("alexanderrobitzsch/mdmb")
alexanderrobitzsch/mdmb documentation built on July 18, 2024, 11:14 p.m.