Contains model-based treatment of missing data for regression models with missing values in covariates or the dependent variable using maximum likelihood or Bayesian estimation (Ibrahim et al., 2005; <doi:10.1198/016214504000001844>; Luedtke, Robitzsch, & West, 2020a, 2020b; <doi:10.1080/00273171.2019.1640104><doi:10.1037/met0000233>). The regression model can be nonlinear (e.g., interaction effects, quadratic effects or B-spline functions). Multilevel models with missing data in predictors are available for Bayesian estimation. Substantive-model compatible multiple imputation can be also conducted.
Package details |
|
---|---|
Author | Alexander Robitzsch [aut, cre], Oliver Luedtke [aut] |
Maintainer | Alexander Robitzsch <robitzsch@ipn.uni-kiel.de> |
License | GPL (>= 2) |
Version | 1.10-1 |
URL | https://github.com/alexanderrobitzsch/mdmb https://sites.google.com/view/alexander-robitzsch/software |
Package repository | View on GitHub |
Installation |
Install the latest version of this package by entering the following in R:
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.