add_interaction_contrasts | Add Interaction Contrasts to an msreve_design |
as_roi | Convert object to ROI |
balance_partitions | Balance Cross-Validation Partitions |
binary_classification_result | Classification results for binary outcome |
classification_result | Create a 'classification_result' instance |
coalesce_join2 | Coalesce Join Two Data Frames |
combine_custom_randomized | Combine Custom Randomized Searchlight Results |
combine_custom_standard | Combine Custom Standard Searchlight Results |
combine_msreve_standard | Combine MS-ReVE (Contrast RSA) Searchlight Results |
combine_prediction_tables | Combine prediction tables |
combine_randomized | Combine randomized classifier results |
combine_rsa_standard | Combine RSA standard classifier results |
combine_standard | Combine standard classifier results |
combine_vector_rsa_standard | Combine Vector RSA standard classifier results |
compute_crossvalidated_means_sl | Compute Cross-Validated Condition Means within a Searchlight |
compute_performance | Compute Performance for an Object |
contrast_rsa_model | Constructor for contrast_rsa_model |
contrasts | Generate Contrast Matrices |
create_dist | Create a Distance Function Object |
create_mvpa_folds | Create Cross-Validation Folds |
create_searchlight_performance | Create Searchlight Performance Object |
cross_validation | bootstrap_blocked_cross_validation |
crossval_samples | crossval_samples |
crossv_block | Block Cross-Validation Data Preparation |
crossv_bootstrap_block | Block Bootstrap Cross-Validation Data Preparation |
crossv_k | K-fold Cross-Validation Data Preparation |
custom_performance | Apply Custom Performance Metric to Prediction Result |
data_sample | Extract Sample from Dataset |
distance-constructors | Distance Function Constructors |
do_merge_results | Merge searchlight results |
do_randomized | Perform randomized searchlight analysis |
do_standard | Perform standard searchlight analysis |
evaluate_model.feature_rsa_model | Evaluate model performance for feature RSA |
evaluate_model.vector_rsa_model | Evaluate model performance for vector RSA |
feature_rsa_design | Create a Feature-Based RSA Design |
feature_rsa_model | Create a Feature-Based RSA Model |
feature_selection | Feature Selection Methods |
feature_selector | Create a feature selection specification |
filter_roi | Filter Region of Interest (ROI) |
fit_model | Fit Model |
format_result | Format Result Object |
gen_sample_dataset | Generate Sample Dataset for MVPA Analysis |
get_nfolds | Get the Number of Folds |
get_samples | Get Multiple Data Samples |
get_searchlight | Generate Searchlight Iterator |
get_unique_regions | Get Unique Region IDs |
group_means | Compute Group Means of a Matrix |
has_crossval | Cross-Validation Availability |
has_test_set | Test Set Availability |
kfold_cross_validation | kfold_cross_validation |
load_model | Load a Pre-defined MVPA Model |
make_feature_contrasts | Generate Contrasts from a Feature Matrix (Optional PCA) |
manova_design | Create a MANOVA Design |
manova_model | Create a MANOVA Model |
merge_classif_results | Merge Multiple Classification/Regression Results |
merge_predictions | Merge Predictions |
merge_results | Merge Multiple Results |
merge_results.manova_model | Merge Results for MANOVA Model |
merge_results.regional_mvpa_result | Merge multiple regional MVPA results into a single result. |
merge_results.rsa_model | Merge Results for RSA Model |
merge_results.vector_rsa_model | Merge results for vector RSA model |
msreve_design | Constructor for msreve_design |
multiway_classification_result | Create a Multiway Classification Result Object |
mvpa_dataset | Create an MVPA Dataset Object |
mvpa_design | Create an MVPA Design Object |
mvpa_iterate | Iterate MVPA Analysis Over Multiple ROIs |
mvpa_model | Create an MVPA Model |
MVPAModels | Pre-defined MVPA Classification Models |
mvpa_surface_dataset | Create a Surface-Based MVPA Dataset Object |
mvpa_sysinfo | Report System and Package Information for rMVPA |
new-analysis-overview | Extending the MVPA Framework: Creating a New Analysis Type |
nobs | Get Number of Observations |
nresponses | Number of Response Categories |
orthogonalize_contrasts | Orthogonalize a Contrast Matrix |
performance | Compute Performance Metrics |
performance.regression_result | Calculate Performance Metrics for Regression Result |
pool_randomized | Combine randomized searchlight results by pooling |
predicted_class | Calculate the Predicted Class from Probability Matrix |
predict_model | Predict Model Output |
prep_regional | Prepare regional data for MVPA analysis |
print.feature_rsa_design | Print Method for Feature RSA Design |
print.feature_rsa_model | Print Method for Feature RSA Model |
print.mvpa_sysinfo | Print mvpa_sysinfo Object |
print.vector_rsa_design | Print Method for vector_rsa_design |
print.vector_rsa_model | Print Method for vector_rsa_model |
prob_observed | Probability of Observed Class |
regional_mvpa_result | Create a 'regional_mvpa_result' instance |
register_mvpa_model | Register a Custom MVPA Model |
regression_result | Create a Regression Result Object |
rMVPA | rMVPA: A package for multi-voxel pattern analysis (MVPA) |
rMVPA-package | rMVPA: Multivoxel Pattern Analysis in R |
rsa_design | Construct a design for an RSA (Representational Similarity... |
rsa_model | Construct an RSA (Representational Similarity Analysis) model |
run_custom_regional | Run a Custom Analysis Function Regionally |
run_custom_searchlight | Run a Custom Analysis Function in a Searchlight |
run_future | Run Future |
run_regional-methods | Region of Interest Based MVPA Analysis |
run_searchlight | Run Searchlight Analysis |
run_searchlight_base | A "base" function for searchlight analysis |
run_searchlight.contrast_rsa_model | Run Searchlight Analysis for Contrast RSA Model |
run_searchlight.default | Default method for run_searchlight |
run_searchlight.vector_rsa | run_searchlight method for vector_rsa_model |
second_order_similarity | Compute Second-Order Similarity Scores |
select_features-methods | Select Features |
strip_dataset | Strip Dataset from Model Specification |
strip_dataset.default | Default method for strip_dataset generic |
sub_result | Extract Row-wise Subset of a Result |
sub_result.binary_classification_result | Subset Binary Classification Result |
sub_result.multiway_classification_result | Subset Multiway Classification Result |
summary.feature_rsa_model | Summary Method for Feature RSA Model |
test_design | Test Design Extraction |
train_indices | Get Training Indices for a Fold |
train_model | Train a classification, regression, or representational... |
train_model.contrast_rsa_model | Train method for contrast_rsa_model |
train_model.manova_model | Train a MANOVA Model |
train_model.mvpa_model | Train an MVPA Model |
train_model.rsa_model | Train an RSA Model |
train_model.vector_rsa_model | Train a vector RSA model |
transform_contrasts | Apply Transformations to an Existing Contrast Matrix |
tune_grid | Extract Tuning Grid |
twofold_blocked_cross_validation | twofold_blocked_cross_validation |
vector_rsa_design | Construct a design for a vectorized RSA model |
vector_rsa_model | Create a vectorized RSA model |
wrap_out | Wrap output results |
wrap_output | Wrap Output |
y_test | Test Labels/Response Extraction |
y_train | Training Labels/Response Extraction |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.