Man pages for brunaw/hebart
Hierachical Embedded Bayesian Additive Regression Trees

calculate_allA function to calculate the likelihood of the fed parameters
calculate_parts_muA function to calculate the terms for the mu posterior
calculate_predsCalculates predictions
data_handlerA function to adjust the data
diagnosticsPlots all diagnostics
diagnostics_density_plotDensity plots for tau, k1 or sqrt(k1/tau)
diagnostics_traceplotTraceplot for tau, k1 or sqrt(k1/tau)
faster_detA function to calculate the determinant of M (faster than...
get_avg_nodesGets node averages
grow_treeGrows the current tree
hebartHierarchical Embedded Bayesian Additive Regression Trees
inv2A function to calculate the inversion of the M matrix
lk_ratio_growLikelihood ratio for grow
lk_ratio_kLikelihood ratio for the sampled k1
lk_ratio_pruneLikelihood ratio for prune.
marginal_distA function to calculate the marginal distribution of y
MH_update_hbartThe metropolis-hastings update for k1
pipePipe operator
plot_avg_nodesPlots node averages
plot_mse_iterMSE per iteration
predict_hebartPredictions for the HEBART model
print.hebartPrint hebart
p_ruleRule selection.
prune_treePrunes the current tree
ratio_growFinal ratio for a growth step.
ratio_pruneFinal ratio for a prune step
sample_parameterssample_parameters
sample_predPrediction sampling
structure_ratio_growTree structure ratio for grow
structure_ratio_pruneTree structure ratio for prune.
transition_ratio_growTransition ratio for grow.
transition_ratio_pruneTransition ratio for prune
tree_priorTree prior
brunaw/hebart documentation built on June 1, 2022, 8:35 p.m.